Registration-Based Segmentation Using the Information Bottleneck Method
نویسندگان
چکیده
We present two new clustering algorithms for medical image segmentation based on the multimodal image registration and the information bottleneck method. In these algorithms, the histogram bins of two registered multimodal 3D-images are clustered by minimizing the loss of mutual information between them. Thus, the clustering of histogram bins is driven by the preservation of the shared information between the images, extracting from each image the structures that are more relevant to the other one. In the first algorithm, we segment only one image at a time, while in the second both images are simultaneously segmented. Experiments show the good behavior of the presented algorithms, especially the simultaneous clustering.
منابع مشابه
A Modified Approach for Image Segmentation in Information Bottleneck Method
Image processing is a form of signal processing. One of the typical operations on image processing is image segmentation. In this paper, we use new image segmentation algorithms based on information bottleneck method. Here we are going to use three algorithms; first we introduce the split-and-merge algorithm, where an image is segmented into set of regions (input) and the intensity histogram bi...
متن کاملCluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کاملSegmentation Improvement of High Resolution Remote Sensing Images based on superpixels using Edge-based SLIC algorithm (E-SLIC)
The segmentation of high resolution remote sensing images is one of the most important analyses that play a significant role in the maximal and exact extraction of information. There are different types of segmentation methods among which using superpixels is one of the most important ones. Several methods have been proposed for extracting superpixels. Among the most successful ones, we can r...
متن کاملA Novel Subsampling Method for 3D Multimodality Medical Image Registration Based on Mutual Information
Mutual information (MI) is a widely used similarity metric for multimodality image registration. However, it involves an extremely high computational time especially when it is applied to volume images. Moreover, its robustness is affected by existence of local maxima. The multi-resolution pyramid approaches have been proposed to speed up the registration process and increase the accuracy of th...
متن کاملNeural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images
Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...
متن کامل